27 septembre 2019

2min

IA symbolique et Deep Learning

En matière d’intelligence artificielle, un enjeu important de la recherche consiste à réaliser la synthèse entre IA symbolique et Deep Learning.

Le Deep Learning qui utilise des réseaux de neurones artificiels est à l’origine des percées les plus significatives de l’intelligence artificielle depuis ces dix dernières années. Pourtant cette approche possède aussi d’importantes limitations. Elle demande par exemple énormément de données et les modèles qu’elle produit ne sont pas aisément interprétables. L’IA symbolique est une approche plus ancienne qui possède des atouts complémentaires au Deep Learning.Un enjeu important de la recherche consiste désormais à réaliser la synthèse entre de ces deux approches. Une telle synthèse apporterait des avancées majeures sur des questions aussi importantes que l’interprétabilité ou la robustesse dans des systèmes critiques.

L’IA symbolique (IAS) s’appuie sur la possibilité d’automatiser un processus de déduction à partir de règles logiques. Elle offre de nombreux atouts complémentaires à l’approche connexionniste qu’incarne aujourd’hui le Deep Learning (DL) auquel on assimile trop souvent l’IA. Parmi les atouts de l’IAS figure en particulier la possibilité de définir un processus d’induction par lequel on peut découvrir des règles susceptibles d’expliquer de manière concise la structure de certains jeux de données. Effectuer la synthèse de ces deux approches, qui incarnent chacune un processus cognitif différent, l’apprentissage par les exemples pour le DL et la déduction logique pour l’IAS, est un problème ouvert au cœur de l’IA. Cet article introduit le sujet en présentant deux tentatives récentes en ce sens. La première vise à incorporer des règles métiers interprétables à un réseau de neurones. La seconde tente de construire un mécanisme d’induction logique capable d’exploiter des données mal définies.

Pirmin Lemberger

Chercheur, Directeur Data Scientist